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Abstract

The article presents an analytical solution for magneto—thermo-electro—elastic problems of a piezoelectric hollow
cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric
excitation. Using an interpolation method solves the Volterra integral equation of the second kind caused by interaction
among magnetic, thermal, electric and mechanical fields, the electric displacement is determined. Thus, the exact expres-
sions for the transient responses of displacement, stresses, electric displacement, electric potential and perturbation of
the magnetic field vector in the piezoelectric hollow cylinder are obtained by means of Hankel transforms, Laplace
transforms, and inverse Laplace transforms. From sample numerical calculations, it is seen that the present method
is suitable for a piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient
electric excitation, and the result carried out may be used as a reference to solve other transient coupled problems
of magneto-thermo-electro—elasticity.
© 2005 Published by Elsevier Ltd.
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1. Introduction

Increased interest in magneto—thermo—electro—elasticity during recent years can be attributed to the fact
that the study of magneto—thermo-electro-mechanical coupled behavior in smart structures. The interac-
tion among magnetic, thermal, electric and mechanical fields in a piezoelectric hollow cylinder is usually
encountered in space shuttles, supersonic airplanes, rockets and missiles, plasma physics and the
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Nomenclature

u,, U radial displacement [m] and displacement vector

c;» e; elastic constants [N/m?] and piezoelectric constants [C/m?]

211, p1 dielectric constants [C?/N m?] and pyroelectric constants [C/m” K]

%, 4;  thermal constants [1/K] and thermal modulus [N/m? K]

o D,, the component of stresses [N/m?] and radial electric displacement [C/m?]
o(r,t) electric potential [V]

T(r,t) temperature change [K]

o, t mass density [kg/m’] and time [s]

H,h  magnetic intensity vector and perturbation of magnetic field vector

J electric current density vector

e perturbation of electric field vector
In magnetic permeability [H/m]

- Lorentz’s force [kg/m? s*]

r, 0, z radial variable, circumferential variable and axial variable [m]

a, b inner and outer radii of piezoelectric hollow cylinder [m]

P.o(1), Ppo(t) internal and external pressure of piezoelectric hollow cylinder [kg/m? s°]
@4(1), @p(t) internal and external electric potential of piezoelectric hollow cylinder [V]
iy, U,y initial radial displacement [m] and initial speed [m/s]

Cr electromagnetothermoelastic wave speed [m/s]

1) the inherent frequency of the piezoelectric hollow cylinder [1/s]

corresponding measurement techniques of magneto-thermo—electro—elasticity. The interaction among
magnetic, thermal, electric and mechanical fields in a piezoelectric hollow cylinder gives rise to the transient
coupled theory of magneto-thermo—electro—elasticity. The theory is applicable to analyze a wide range of
magnetically, thermally, electrically and mechanically coupled phenomena in the mixed state.

Shul’ga et al. (1984) investigated the axisymmetric electroelastic waves in a piezoelectric hollow ceramic
cylinder. An exact solution for the static analysis of a simply-supported piezoelectric plate and a layered
intelligent plate under cylindrical bending was presented by Ray et al. (1992, 1993). Mithchell and Reddy
(1995) presented a power series solution for the static analysis of an axisymmetric composite cylinder with
surface bonded or embedded piezoelectric laminate. Chandrasekhararaiah (1988) gave a generalized linear
theory for piezoelectric media. A classical laminated plate theory was used by Tauchert (1992) to investigate
the response of a thin composite plate coupled with piezothermoelastic layers, subjected to combined ther-
mal and electrical excitations. Finite element formulations for piezothermoelastic materials to demonstrate
their ability for distributed sensing and distributed precision control of advanced intelligent structures were
given by Rao and Sunar (1993, 1994). Exact piezothermoelastic solutions of a finite transversely isotropic
piezoelectric cylindrical shell under axisymmetric thermal, pressure and electrostatic excitation and a sim-
ply-supported hybrid cylindrical shell made of cross-ply composite laminate and piezoelectric layers were
presented by Kapuria et al. (1996, 1997). The free vibrations of piezoelectric, empty and also compressible
fluid filled cylindrical shells for three-dimensional problems were studied by Ding et al. (1997). By means of
using the linear equations of piezothermoelasticity, Raja et al. (1999) presented a generalized piezothermo-
elastic finite element formulation of a laminated beam with embedded piezoelectric material as distributed
actuators/sensors. Wang and Lu (2002) presented a theoretical method to analyze magneto-thermo-—elastic
waves and perturbation of the magnetic field vector produced by thermal shock in a solid conducting
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cylinder. By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic
dynamic problem of hollow cylinder was investigated by Ding et al. (2003). Dai and Wang (2004) presented
an analytical solution for the interaction of electric potential, electric displacement, elastic deformations
and mechanical loads, and described electromagnetoelastic responses and perturbation of the magnetic
field vector in a piezoelectric hollow cylinder subjected to sudden mechanical load and electric potential.

To date investigations on the interaction of thermo—electro-mechanical coupled behavior in piezoelectric
structures have mainly considered a transient interaction among thermal, electric and mechanical fields,
and transient electric interaction between electric field and mechanical field. However, investigations on
magneto-thermo—electro—elastic transient response of a piezoelectric structure placed in an axial magnetic
field subjected to arbitrary thermal shock, mechanical load and transient electric excitation have been very
few.

In this paper, the magneto—thermo—electro—elastic equation of a piezoelectric hollow cylinder is decom-
posed into a quasi-static homogeneous equation with inhomogeneous boundary conditions and an inhomo-
geneous dynamic equation with homogeneous boundary conditions. Firstly, using the method described by
Lekhniskii (1981), the quasi-static question is solved by the direct integral. Secondly, the solution to the
inhomogeneous dynamic question which satisfies homogeneous boundary conditions is obtained by utiliz-
ing the corresponding finite Hankel transforms (Cinelli, 1965), the Laplace transforms and their inverse
transforms. Then, using an interpolation method solves the Volterra integral equation of the second kind
caused by interaction among magnetic, thermal, electric and mechanical fields. Thus, the exact expressions
for the transient responses of displacements, stresses, electric displacement, electric potential and perturba-
tion of magnetic field vector in the piezoelectric hollow cylinder are obtained. Finally, numerical examples
are calculated and discussed.

2. Basic formulations

Considering a long, piezoelectric hollow cylinder with internal radius @ and external radius b in an axial
magnetic field H (0,0, H.), letting the cylindrical coordinates of any representative point be (r,0,z), and
assuming that the piezoelectric hollow cylinder is subjected to a rapid change in temperature 71(r,?). For
the axisymetric plane strain problem, the components of displacement and electric potential in the cylindri-
cal coordinate (r,0,z) system are expressed as uy=u. =0, u, =ulr,t) and ¢ = ¢(r,1), respectively. The
constitutive relations of piezoelectric media are expressed as

Ou, ; 0
O'rr:0116—t+012u7+€116—f*117"(”af)7 (la)
Ou, u, o
= Cy — = — — LT (rt 1b
g9 = C12 o +cn B +en or 2T (7, 1), (1b)
Ou, u, 0
Uzz:C13E+Cz37+€13a—(f—)»3T(V7f), (1c)
Ou, U, 0
Drr:611—+€12——g11—(ﬂ+ﬁ1T(”J>7 (1d)
or r or
Al =cnoy 4 cnoy 4 c1303, Ay = a0 + ents + etz Az = €130 + €300 + €330, (le)

where c¢;;, e;, o; g1 and f; are elastic constants, piezoelectric constants, thermal expansion coefficients,
dielectric constants, and pyroelectric coefficients, respectively. o; and D,, are the component of stresses
and radial electric displacement, respectively.

The boundary conditions are

op(a,t) = Pu(t), 0,(bt)=Pr(t), @(at)=q,t), @bt)= ). (2)
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The initial conditions are

R e L) ®)

Assuming that the magnetic permeability, u, of the piezoelectric hollow cylinder equals the magnetic perme-
ability of the medium around it, the governing electrodynamic Maxwell equations (Kraus, 1984) are given by

e £ JU
J=Vxh, Vx e= i7" divh =0, e:—,u<§xH>, h=V x(UxH). 4)
Applying an initial magnetic field vector H (0,0, H.) in the hollow cylindrical coordinate (r,0,z) to Eq. (4),
yields

U= (,0,0), ¢= (0 H. aa”” 0>, h=(0,0,4,),
- Oh, ou, u,
= _—— = _H —_— _— .
J (o, 6r’0>’ h Z<ar+r) ®)
The electomagnetic dynamic equation of the piezoelectric hollow cylinder is expressed as
aarr O — 009 _ azur
o T TP (©
where p is the mass density, /.. is defined as Lorentz’s force (Kraus, 1984), which may be written as
0 (Ou, u,
H) = uH — .
o=t ) = it () 0
In order to simplify calculation, the non-dimensional forms are introduced as follows:
C12 €22 €13 €23 €1i .
cg=—, O=—, C3=—, C&O=—, ¢= (1213233)7
C11 i1 C11 11 \/Cll—gu
i D T
=2 (i=r0), ¢= L p= D g AT0D gy
11 cn b Ve c1
BT (r, 1) u, r a [cni Cyt . Jfz
T yT) = ) Uu=-_, =7 §=-, Cy = ] T=—0, z = b7 8
o) Vengn b ¢ b b g 0 b i ®)
Pyo(1) Po(1) g1 ¢(a,t) g1 (b, 1)
Pa T) = 5 P, y 1) = —_— T) = —
@ =" P =TRE g, = LD g = BT
then, Egs. (1), (6) and (7) can be rewritten as
Ou )
i — T
oy 6§+le+el o 1(€,7), (9a)
Ou u 0
Uezcla—é+czg+eza—?—Tz(faf)7 (9b)
g, = 25—1—04?—1—63%—&(5,1)7 (9¢)
Ou u 0¢
D, = 6§+e2£ aé+T/;(5ﬂ)a (9d)

0o, 0, — 0y Qu
4 — ,
o0& £ 012

NH?E@ z)
Frae\eete) o0
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In absence of free charge density, the charge equation of electrostatics is

oD,(¢,1) Dy

T—&—? =0. (10)
From Eq. (10), gives

] an

where d(7) is an undetermined function to non-dimensional time <.
According to Eq. (8), the boundary conditions (2) and the initial conditions (3) are rewritten as

O-V(S7T) = Pﬂ(r)v O-r(17f) = Pb(f)v ¢(S,T) = (f)a(’f), d)(l?T) = d)b(r)? (123')
B ou(é, ) B
O = ) (12b)
Substituting Eq. (11) into Eq. (9d), gives
0 _ o % o L £ 10, (13)

e ae e
Substituting Eq. (13) into Egs. (9a) and (9b), yields,

o =(1+ ef)g—g+ (e + elez)g—%d(‘t) — Thy(&,7), (14a)

G0 = (c1 + elez)g—z—l— (e + eg)%— e—gd(r) — Top(E,1), (14b)
where

Tip(&1) =T(E 1) —eTp(E, 1), Top(é, 1) = Th(&, 1) — eaTp(E, 7). (14c)

Substituting Eq. (14a,b) into Eq. (9e), the basic displacement equation of magneto—thermo—electro—elastic
motion of the piezoelectric hollow cylinder is expressed as

Fu(C,) L&) HuEr) 1 Tulr) 1? (e, (152)

o0& ¢ oc & B CZ o012
where
- 611(Cz+e%)+,llH§ C, - 011(14—6%)-1—/11‘[5
en(1+e3) + uH?’ e
cie 1 oTy 1
- 8T = 5 (Tip = Top) |- 15b
en(l+e}) + uH? &(&7) en(1+¢e2) + uH? | d¢ é( 15— T2p) (15b)

Substituting Eq. (14a) into Eq. (12a), the corresponding stress boundary conditions are rewritten as

ou(é, ) u(é, 1) — 0u(r
{ et L_S_ol(), (16a)

ou(é, 1) u(é, 1) (e
{ 0e +h 7 LI—OZ( ), (16b)

)
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where
c1 +ee 1 e
= —_ = — | — T
=N 0O =1 g [0+ Tuls ) 4],
1
02(‘[) = ﬁ [eld(r) + Tug(l,f) +pb(‘5)] (160)
+ e7

3. Solving technique

Assuming that the general solution to the basic displacement Eq. (15) of magneto—thermo—electro—clas-
tic motion is expressed in the form

u(&,t) = uq(&, 7) +ua(, 1), (17)
where ug(¢, 1) and u4(&, 1) are, respectively, the quasi-static solution which satisfies inhomogeneous bound-
ary conditions and dynamic solution which satisfies homogeneous boundary conditions, to Eq. (15a).

The quasi-static solution uy(¢, t) must satisfy the following Eq. (18a) and the corresponding inhomoge-
neous boundary conditions Eq. (18b-c).

Qug (&, 1 dug (€, H? d
u;(ég 7) : uqég T)—?uq(f,f)ZI%-Fg(f,r), (18a)
[6%;? Dy huC‘(? T)} = 0i(v), (18b)
é=s
[auqé?r) +huq(§,r)] - 0s(2). (18c)
—
Eq. (18a) can simplify to
e e e S ORTCE) (19)

From Eq. (19) the quasi-static solution for Eq. (18a), which satisfies the boundary condition Eq. (18b—c) is
expressed as

ug(&,7) = 1 (& 1) + ¥2(E)pa(v) + ¥3(E)ps (7) + ¥ (8)d (1), (20)

where

14 14
(&)=t / i / £ (e ) dede
52AH _ g ’ 2

+ [ - H} gy (x) + %e (1a)

&) = sf”céﬁ - £~ ) £ 1] -

Ui (&) = ngé%H [(ézﬂz;jzfl) B (thHH)} | e
(e = 1T 2

AES sz;ISZH - thHH] G ili)ci & (21d)
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B I(1 =571y ¢ "
g3g2[(Hh)g‘+T+c_§(ls )|
B 2H _—2+S_H-|-SH

gz_(l—szﬂ)(H+h)’ Y]

(]1(‘5) :/ w2H— ]/ é—HJrl éf)dédf q2 / £—H+l éf 5

L

q5(1) = gz{(H —hqi(7r) = gx(7) + % [T1p(1,7) = 5" Tg(s, 7)] } (2lej)

Substituting Eq. (17) into Eq. (15a) and utilizing Eq. (16a,b) and Eq. (18) provides an inhomogeneous dy-
namic equation with homogeneous boundary conditions, and the corresponding initial conditions for u4(&, 7)

Qug(é,1) 1 dug(é,7) H? 1 [Qug(Er) Dug(é1)
652 JFE ¢ *?ud(éﬂf) = C_i |: o + o ]a (22a)
az’ld(§7ﬁl:) Ud(é,f)] o |:aud(5,f) ud(faf):| o
[ a0 +h ; 5_370, E +h i =0, (22b)
ug(,0) + ug(&,0) = u, audéf’ 0 + a”qéf’ 0 _ vo- (22¢)

In the above equation, uy(£,7) is the known solution as shown in Eq. (20).
The homogeneous equation (let uq(&, ) = 0) of Eq. (22a) with homogeneous boundary (22b) is solved by
assuming

ug(&,7) = uq;(&) exp(ion). (23)
The corresponding Eigen-equation is expressed as

JoYy—JpY, =0, (24)
where

T (k;
Jo = kiJy(kis) + h# Ty = kiJy (ki) + hJ y (k;), (25a)
Yy (ki

Ya :k,Y;_I(k,S)—Fh#, Yb :k,Y;i(kl)+hYH(k,) (25b)
Ju(ki&)and Yy(k;£) are the first and the second kind of the Hth-order Bessel function, respectively. In these
expressions, k; (i =1, 2,...,n) express a series of positive roots for natural Eigen-equation (24). The natural
frequencies are

w; = CLki. (26)

From Cinelli (1965), defining #4(k;, 7)as the finite Hankel transform of the solution u4(¢,t) for Eq. (22a),
yields

aa(ki,7) = / ug (&, 7)o (i) 2. 27)
Then, by making use of the inverse of the transform, yields

w(e) =Y " 0o, 29)

i
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where

1
Flky) = / G k)P de,
_Ji i {hz _’_klZ

Gl OO @) -

Gu(ki&) = Ju(ki&)Y o — J Yy (kil). (29b)

Applying the finite Hankel transform (27) to Eq. (22a) and utilizing the corresponding boundary condi-
tion (22b), gives

9 _
—kiug(k;, 1) = = 30 o (30)

1 |:azad(ki7 7) + azl_‘q (ki, 7)}
2 ’

where #q(k;, ©) = Hluq(&, 1)].
Applying the Laplace transform to the two sides of Eq. (30) and utilizing the initial condition (22c),
yields

—k; Clity(ki, p) = p*uy(ki, p) + pu,(ki, p) — pito(k;) — 0o (k) (31)

where p is the parameter of the Laplace transform.
Eq. (31) can be simplified to

—x —x 12 —x u ki n ki

() = i)+ [ )+ e (32)
where o (k;) = H[uo(&)] and oo(k;) = H[vo(E)].

The inverse Laplace transform for Eq. (32), gives

tg(k;, v) = —uq(ki, v) + o;fig (k;, 7) sin(w;7)] + g (k;) cos(w;t) + % sin(w;1), (33)
where

tg(k;, 7) sin(w;t) = /I g (k;, t) sinfw;(t — t)] dz. (34)

0

Substituting Eq. (34) into Eq. (33), gives

ttq ki, 7) sin(w;7) = /0 [ (i, )+ W (k) (1) + W3 (ki)py (7) + Yy (ki )d (7)] sin[(t — 1)] dt, (35)

where Y, (ki,7) = H[,(&, 1), (j=1,2,3,4).
Substituting Eq. (35) into Eq. (33), yields

itg (ki T) = Dk, ©) + W (ki) Lo (ki, ©) + W3 (ki) Lk, ©) + W (ki) L (i, ) + i (i, ), (36)
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where
Lilks,©) = — P (ki ©) + a)i/orl//l(ki,t) sinfor(z — 1)]dr,
Ly(ki,t) = —p,(7) + w,—/ofpa(t) sin[w;(t — 1) dt,
(ke ®) =~y (0) + 0, [ psinfo(s - 0]dr (37)
Lk 7) = —d(x) + o, /0 () sinfeos(c — 0)]dv,
Isi(kiy ) = wp(k;) cos(w;t) + vo(k; )wi,- sin(w;).

Substituting Eq. (36) into Eq. (28), the dynamic solution for inhomogeneous dynamic equation (22) with
homogeneous boundary conditions is given by

(e.) = 37 G Itk )+ Bt ) )0 ) + Bk ) + Lk )G9

Thus, from Egs. (17), (20) and (38), the solution of the basic displacement equation of magneto—thermo—
electro—elastic motion in the piezoelectric hollow cylinder is expressed as

u(S, 1) = (& 1) + ¥ (E)py(v) + ¥3(Opy(7) + ¥hu(E)d(7) + Z GH ké

X [Ti(ki, ©) 4 Yo (ki) Doi(kiy T) 4 s (ki) D3i(kiy T) + g (K ,~)I4f(ki, T) + Isi(ki, 7)]. (39)

Noting that in the above expression d(7) still is an unknown function which is relation to the electric dis-
placement. Thus, it is necessary to determine ¢(7) in the following.
Integrating Eq. (13) and utilizing the corresponding electric boundary condition (12a), yields

D(&,1) = P1(& 1) + P2(E)p,(7) + P3(E)py(T) + Pa(S)d(x) + Z Psi(E)Fi(7) + ¢, (1), (40)

where

‘pl(éa ‘L') =¢ [%(fﬁ) _ W](S’ ‘L') _ Z (GH(kléI):(;cl)GH(le)) lp](ki,f)‘|

ki

°1 . Gy (ki€) - :
+e / E[wl(g,q,-)—}k; Fiy Y1tk dEt / Ty(&,7)d, (41a)
0:(6) = a1 [ 9a() — ) - 37 (O Iy
‘1 o Gulkd)
e / élwf) > e %(k,)] . (41b)

“1 Gy (ki) -
+ez/s El‘p%(f) - kz Flk) %(ki)] dg, (41c¢)
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@(é)elltﬁ“(é)m(s) > ot GH(’””M«»]

ve [ 1|t - 3 Gulidly ] (414)
00 = o (G Gtk 2 Gulh) g "
Fi®) = Fu(®) + D)o [ dlo)sinfo (s~ 0)dr (411)
Fu(e) = o [ Btk sinfonc — 0ldr+ Ballhor [ pu(oysinfo(c - o) d

0o, [ puoysinfonc = 01dr-+ m(k) cos(o) + (k) - sin(wre). (41¢)

When ¢ =1 at the outer electric boundary of the piezoelectric hollow cylinder, Eq. (40) can be rewritten
as

$y(1) = P1(1,7) + D2(1)p,(v) + P3(1)p,(7) + P4(1)d(7) + Z Psi(1)Fi(7) + (7). (42)

Substituting t = 0 into Eq. (42), yields

d(0) = $4(0) — ¢,(0) — &1 (1,7) — ‘Pz(l(;lz(z(l(;) — 3(1)py(0) = 3225 (DFi(0). (43)
Substituting Eq. (41d) into Eq. (42), yields

() = Mid(2) + 3 M /0 () sinfeos(c — 0] dt, (44)
where

() = ¢u(t) — Do (1) — D1 (1, 1) — D2(1)p, (1) — P3(1)py(7 Z‘Ds: JF1i(1) My = ®4(1),

My = DD (ki) (45)

It is seen that Eq. (44) is the Volterra integral equation of the second kind (Kress, 1989). In the following,
Eq. (44) is solved by using the recursion formula based on linear interpolation function. In order to show
the method of solving the integral Eq. (44), the time interval [0, 7] is firstly divided into » subintervals. The
discrete time points are 7o = 0,7y, 72,...,7,. Then the interpolation function at the time interval [t;_;,7;] is
expressed as

d(v) = n)(D)d(r;1) +ny(0)d(zy)  (=1,2,...,n), (46)
where
W@ = @) = (=12 ), (47)

Substituting Eq. (46) into Eq. (44), gives

V(z;) = Myd(t;) + ZMz,- Z [Rid (ti1) + Sipd (t0)], (48)
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where
Rijk = J":—l ng(f) Sin[w,‘(T — I)] dt

Sie = [, mi(t) sinfo;(z — 1)] dt

Tk—1

From Eq. (48), yields

_ () = > M 1 Rid (1) + Sid ()] — d(t;-1) Y MaiRyy
My + 37 ,MSy;

Substituting d(0) in Eq. (43) into Eq. (48), d(t;) can be obtained, (j = 1,2,...,n) step by step, and determine
d(7). Substituting d(7) obtained from Eq. (50) into Eq. (39), gives the exact expression of the solution,
u(¢,7), for the basic equation of magneto—thermo-electro—elastic motion in the piezoelectric hollow cylin-
der. Thus, the corresponding transient stresses o,.(&, 1), a9(&, 7), the transient electric displacement D,(&, 1),
the transient electric potential ¢(&,t) and perturbation of magnetic field vector /.(&,t) are easily obtained
from Egs. (9), (13) and (5b).

(k=1,2,....j, j=1,2,....n). (49)

d(1)) (G=1,2,....n (50)

4. Numerical results and discussion

Transient responses and distributions of the piezoelectric hollow cylinder placed in an axial magnetic
field, subjected to complex loadings are considered. A transitory temperature change produced by a sudden
electric current pulse or by absorption of electromagnetic wave, is typically of a duration much less than
1 us and may be expressed as

T(r,1) = T0<1 —%)H(t), (51)

where T is taken as 1, and H(¢) expresses the Heaviside function.
In the numerical calculations, material constants are selected for the piezoelectric hollow cylinder as
follows:

ci1 = cy3 = 111.0 GPa, ¢ =220.0 GPa, c¢j3=cy3 = 1150 GPa, e;; =151 (VmN™),
en=e3=-52(VmN"), o =a=00001 (K"), o =000001 (K",
gy =562x10° (NV?), f,=-25x10°(NV'm'K"), p=4350 (kgm>).
The dynamic responses in the piezoelectric hollow cylinder subjected to a suddenly mechanical load on
the internal surface are to be considered. The corresponding boundary conditions are expressed as
o.(1,7) = aoH (1), o,(1,7)=0, ¢,(s,7)=0, ¢,(1,7)=0, (52)

where gy is a constant pressure, the non-dimensional ¢; =2 (i =r,0), D; = %, o' =2 and i} = (’Z—O are
introduced in Figs. 1-10.

S

Example 1. The wall thickness ratio is s = 1/21, the dimensionless time is taken as 1 = % = %, and the

dimensionless radial coordinate is taken as R = % =4 The response histories and distributions of the
dynamic stresses for R =20 are shown in Figs. 1 and 2. In order to avoid the effects of reflected waves,
the computing time 71 = 20 is taken. Figs. 1, 2 and 5, respectively, show the response histories of radial,
hoop stresses and perturbation of magnetic field vector at different radial points. It is easy seen that the
stresses responses and perturbation of magnetic field vector at some points is essentially zero before the
arrival of the wavefront, and have strong discontinuities at the points where the wavefront arrives at. The

amplitude of the wavefront decays gradually, and the dynamic response approaches to the quasi-static
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Fig. 1. Response histories of dynamic stress o; at R=0, R=1, R=2, and R =20 where R ="¢, 1l = Cu
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Fig. 3. Response histories of dynamic electric displacement D;, at R=0, R=1 and R =2, where R ="¢, 1] =<
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solution at the same point when time is large and the effect of reflected does not appear. Figs. 3 and 4
illustrate the response histories and distributions of the electric displacement D,(&,7) and the electric
potential ¢(¢,7) at the different radial points in the piezoelectric hollow cylinder subjected to a suddenly
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Fig. 4. Response histories of dynamic electric potential ¢*, at R=0, R=1, R=2 and R =20, where R ="=4¢, 1l =
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Fig. 6. Response histories of the transient radial stresses o} at R=0, R=0.5, and R=1, where R =72, 7l =1, 0, =

a’

pressure on the internal surface. From Figs. 3 and 4, it is easy seen that the response histories and
distributions of the electric displacements D,(&, 7)and the electric potential ¢(&, t) are similar to that of the
dynamic stresses. They will also arrive finally at a steady value when time 7 is large and the effect of
reflected does not appear. From Fig. 4, it is seen that the electric potential ¢(&,1) at the internal and
external boundary equal zero, which satisfy the prescribed electric boundary conditions. The above
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Fig. 8. Response histories of the transient electric displacements D;, at R=0, R=0.5,and R=1, where R = =2, 11 = Gt opr =D
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Fig. 9. Distributions of the transient electric potentials ¢*, at t1 =1, 11 =5 and 7l = 10, where R =14, 11 =L ¢ = 2,

described shows that the solution in the paper possesses wave properties, and the correction of the
numerical results is clarified.

In the following two examples, the internal radius of the piezoelectric hollow cylinder is taken as
a=0.01m, and the wall thickness ratio is taken as s=1/2. The dimensionless time is taken as
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Fig. 10. Response histories of perturbation of magnetic field vector /}, at R=0, R=0.5and R=1 where R =%, 11 = % h=t
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Tl = (1%)10 = bCTLfZ, the dimensionless radial coordinate, R = % = 7=% and the response time is taken as
v

s b—
11 = 50.

Example 2. Other conditions are the same as Example 1. Figs. 6 and 7, respectively, show the response
histories of radial and hoop stresses at different radial points. Because of the small wall thickness, the effects
of wave reflected between the inner-wall and outer-wall appear. From Fig. 6, it is shown that except the
radial stresses at the internal and external surfaces of the piezoelectric hollow cylinder satisfy the given zero
boundary condition, and the stresses at other points oscillate dramatically because of the effect of wave
reflected between the inner wall and outer wall. From Figs. 7 and 8, it is seen that the peak values of hoop
stresses and electric displacements decrease gradually from internal wall to external wall at the identical
time 7. It is seen in Fig. 9 that the electric potential ¢* at the internal and external boundaries equal zero,
which satisfy the prescribed electric boundary conditions (52), and the distribution of the electric potential
¢* along radius is non-linear at different non-dimensional time 7. Fig. 10 depicts the response histories of
magnetic field vector at different radial points. It is seen easily from the curve that the magnitude value of
perturbation of magnetic field vector becomes small from the internal wall to external wall of the piezoelec-
tric hollow cylinder.

Example 3. Consider that the transient responses of the piezoelectric hollow cylinder subjected to thermal
shock load T(r,t) in Eq. (51), and electric excitation induced by inhomogeneous electric boundary condi-
tions (53). The inhomogeneous electric boundary condition are written as

Gr(laf):()v Gr(laf) =0, d)a(S,‘E) =0, (,Zsb(LT) :¢OH(T)7 (53)
where ¢ is a constant electric potential, the non-dimensional 67 = - (i = r,0), D; = f;—g, o= (;—PO and i} =

by

4 are introduced in Figs. 11-15.

From Figs. 11 and 14, it is seen that the radial stresses and the electric potential at the boundaries
R =0,1 satisfy the given boundary conditions. Except the points at given boundary condition, transient
responses at other points oscillates dramatically as shown in Figs. 11 and 14. It is seen from Fig. 11 that the
maximum amplitude of radial compression stress is larger than that of radial tension stress. Fig. 12 shows
that the amplitude of hoop compression stress at the internal wall of the piezoelectric hollow cylinder is
larger than the amplitude of hoop tension stress. However, the amplitude of hoop compression stress at the
external wall of the piezoelectric hollow cylinder is less than the amplitude of hoop tension stress, which is
shown in Fig. 12. The response histories of electric displacement always are negative as shown in Fig. 13.
This is similar change as shown in Fig. 8. It is seen in Fig. 14 that the distribution of the electric potential ¢*
along radius is weak non-linear at different non-dimensional time 7. Comparing Figs. 15 and 10, it is seen
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that the histories and distribution of perturbation of magnetic field vector caused by the sudden unit electric
potential is similar to that caused by the sudden unit pressure, but the responded amplitude of perturbation
of magnetic field vector caused by the sudden unit electric potential is larger than that caused by the sudden

unit pressure.
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Fig. 16. Response histories of radial stress o,, at R = 0.5 in the piezoelectric hollow cylinder no considering an axial magnetic field load
and thermal shock, where R = =¢, 7] =&t
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Example 4. In order to prove further the correctness of analytical results in the paper, omitting the axial
magnetic field load and thermal shock, the present method can be applied to solve the transient problem of
piezoelectric hollow cylinders. For ease of comparison with reference (Ding et al., 2003), the same transient
problem of the piezoelectric hollow cylinder no considering an axial magnetic field load and thermal shock
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Fig. 17. Response histories of hoop stress gy, at R = 0, in the piezoelectric hollow cylinder no considering an axial magnetic field load

and thermal shock, where R = 1=¢ 7] = £

is taken and the same parameters are taken: the ratio of internal radius to external radius s = a/b = 1/2, the

dimensionless radial coordinate R = ;=% and dimensionless time 7l = I;CTL; The boundary conditions are

expressed in Eq. (52). From Figs. 16 and 17, one can see that the results from the two different methods
are nearly the same.

5. Conclusions

1. Comparing Example 2 with Example 3, it is seen that the response histories and distributions of stresses,
electric displacement, electric potential and perturbation of magnetic field in a piezoelectric hollow cylin-
der are obviously different for two kinds of boundary conditions which are, respectively, shown in Egs.
(52) and (53). Thus, it is possible to control the response histories and distribution of magneto—thermo—
electro—elastic stresses in the piezoelectric hollow cylinder by applying a suitable thermal load, mechanical
load and electric excitation load to the structure, or to assessment the response histories and distributions
of magneto—thermo-electro—elastic stresses in the piezoelectric hollow cylinder by measuring the response
histories of electric potential in the structure.

2. It is noted that while solving the present problem, the number of eigenvalue terms was taken to be only
40, and the relative error in the results obtained was less 1%, from this knowledge of the response his-
tories for magneto-thermo—electro—elastic stresses, electric displacement, electric potential and perturba-
tions of an axial magnetic field in the piezoelectric hollow cylinder. We can design various
electromagnetoelastic elements under complex loads to meet special engineering requirements.

3. Itis concluded from the above analyses and results that the present solution is accurate and reliable, and
the method is simple and effective. So it may be used as a reference to solve other transient problems of
coupled magneto—thermo—electro—elasticity.
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