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Abstract

The article presents an analytical solution for magneto–thermo–electro–elastic problems of a piezoelectric hollow
cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric
excitation. Using an interpolation method solves the Volterra integral equation of the second kind caused by interaction
among magnetic, thermal, electric and mechanical fields, the electric displacement is determined. Thus, the exact expres-
sions for the transient responses of displacement, stresses, electric displacement, electric potential and perturbation of
the magnetic field vector in the piezoelectric hollow cylinder are obtained by means of Hankel transforms, Laplace
transforms, and inverse Laplace transforms. From sample numerical calculations, it is seen that the present method
is suitable for a piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient
electric excitation, and the result carried out may be used as a reference to solve other transient coupled problems
of magneto–thermo–electro–elasticity.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Increased interest in magneto–thermo–electro–elasticity during recent years can be attributed to the fact
that the study of magneto–thermo–electro–mechanical coupled behavior in smart structures. The interac-
tion among magnetic, thermal, electric and mechanical fields in a piezoelectric hollow cylinder is usually
encountered in space shuttles, supersonic airplanes, rockets and missiles, plasma physics and the
0020-7683/$ - see front matter � 2005 Published by Elsevier Ltd.
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Nomenclature

ur, U
+

radial displacement [m] and displacement vector
cij, eij elastic constants [N/m2] and piezoelectric constants [C/m2]
g11, b1 dielectric constants [C2/N m2] and pyroelectric constants [C/m2 K]
ai, ki thermal constants [1/K] and thermal modulus [N/m2 K]
rii, Drr the component of stresses [N/m2] and radial electric displacement [C/m2]
u(r, t) electric potential [V]
T(r, t) temperature change [K]
q, t mass density [kg/m3] and time [s]

H
+
; h
+

magnetic intensity vector and perturbation of magnetic field vector
J
+

electric current density vector
e
+

perturbation of electric field vector
l magnetic permeability [H/m]
fzz Lorentz�s force [kg/m2 s2]
r, h, z radial variable, circumferential variable and axial variable [m]
a, b inner and outer radii of piezoelectric hollow cylinder [m]
Pa0(t), Pb0(t) internal and external pressure of piezoelectric hollow cylinder [kg/m2 s2]
ua(t), ub(t) internal and external electric potential of piezoelectric hollow cylinder [V]
ur0, vr0 initial radial displacement [m] and initial speed [m/s]
CL electromagnetothermoelastic wave speed [m/s]
x the inherent frequency of the piezoelectric hollow cylinder [1/s]

H.L. Dai, X. Wang / International Journal of Solids and Structures 43 (2006) 5628–5646 5629
corresponding measurement techniques of magneto–thermo–electro–elasticity. The interaction among
magnetic, thermal, electric and mechanical fields in a piezoelectric hollow cylinder gives rise to the transient
coupled theory of magneto–thermo–electro–elasticity. The theory is applicable to analyze a wide range of
magnetically, thermally, electrically and mechanically coupled phenomena in the mixed state.

Shul�ga et al. (1984) investigated the axisymmetric electroelastic waves in a piezoelectric hollow ceramic
cylinder. An exact solution for the static analysis of a simply-supported piezoelectric plate and a layered
intelligent plate under cylindrical bending was presented by Ray et al. (1992, 1993). Mithchell and Reddy
(1995) presented a power series solution for the static analysis of an axisymmetric composite cylinder with
surface bonded or embedded piezoelectric laminate. Chandrasekhararaiah (1988) gave a generalized linear
theory for piezoelectric media. A classical laminated plate theory was used by Tauchert (1992) to investigate
the response of a thin composite plate coupled with piezothermoelastic layers, subjected to combined ther-
mal and electrical excitations. Finite element formulations for piezothermoelastic materials to demonstrate
their ability for distributed sensing and distributed precision control of advanced intelligent structures were
given by Rao and Sunar (1993, 1994). Exact piezothermoelastic solutions of a finite transversely isotropic
piezoelectric cylindrical shell under axisymmetric thermal, pressure and electrostatic excitation and a sim-
ply-supported hybrid cylindrical shell made of cross-ply composite laminate and piezoelectric layers were
presented by Kapuria et al. (1996, 1997). The free vibrations of piezoelectric, empty and also compressible
fluid filled cylindrical shells for three-dimensional problems were studied by Ding et al. (1997). By means of
using the linear equations of piezothermoelasticity, Raja et al. (1999) presented a generalized piezothermo-
elastic finite element formulation of a laminated beam with embedded piezoelectric material as distributed
actuators/sensors. Wang and Lu (2002) presented a theoretical method to analyze magneto–thermo–elastic
waves and perturbation of the magnetic field vector produced by thermal shock in a solid conducting
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cylinder. By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic
dynamic problem of hollow cylinder was investigated by Ding et al. (2003). Dai and Wang (2004) presented
an analytical solution for the interaction of electric potential, electric displacement, elastic deformations
and mechanical loads, and described electromagnetoelastic responses and perturbation of the magnetic
field vector in a piezoelectric hollow cylinder subjected to sudden mechanical load and electric potential.

To date investigations on the interaction of thermo–electro–mechanical coupled behavior in piezoelectric
structures have mainly considered a transient interaction among thermal, electric and mechanical fields,
and transient electric interaction between electric field and mechanical field. However, investigations on
magneto–thermo–electro–elastic transient response of a piezoelectric structure placed in an axial magnetic
field subjected to arbitrary thermal shock, mechanical load and transient electric excitation have been very
few.

In this paper, the magneto–thermo–electro–elastic equation of a piezoelectric hollow cylinder is decom-
posed into a quasi-static homogeneous equation with inhomogeneous boundary conditions and an inhomo-
geneous dynamic equation with homogeneous boundary conditions. Firstly, using the method described by
Lekhniskii (1981), the quasi-static question is solved by the direct integral. Secondly, the solution to the
inhomogeneous dynamic question which satisfies homogeneous boundary conditions is obtained by utiliz-
ing the corresponding finite Hankel transforms (Cinelli, 1965), the Laplace transforms and their inverse
transforms. Then, using an interpolation method solves the Volterra integral equation of the second kind
caused by interaction among magnetic, thermal, electric and mechanical fields. Thus, the exact expressions
for the transient responses of displacements, stresses, electric displacement, electric potential and perturba-
tion of magnetic field vector in the piezoelectric hollow cylinder are obtained. Finally, numerical examples
are calculated and discussed.
2. Basic formulations

Considering a long, piezoelectric hollow cylinder with internal radius a and external radius b in an axial
magnetic field H

+

ð0; 0;HzÞ, letting the cylindrical coordinates of any representative point be (r,h,z), and
assuming that the piezoelectric hollow cylinder is subjected to a rapid change in temperature T(r, t). For
the axisymetric plane strain problem, the components of displacement and electric potential in the cylindri-
cal coordinate (r,h,z) system are expressed as u0 = uz = 0, ur = ur(r, t) and u = u(r, t), respectively. The
constitutive relations of piezoelectric media are expressed as
rrr ¼ c11

our

or
þ c12

ur

r
þ e11

ou
or
� k1T ðr; tÞ; ð1aÞ

rhh ¼ c12

our

or
þ c22

ur

r
þ e12

ou
or
� k2T ðr; tÞ; ð1bÞ

rzz ¼ c13

our

or
þ c23

ur

r
þ e13

ou
or
� k3T ðr; tÞ; ð1cÞ

Drr ¼ e11
our

or
þ e12

ur

r
� g11

ou
or
þ b1T ðr; tÞ; ð1dÞ

k1 ¼ c11a1 þ c12a2 þ c13a3; k2 ¼ c12a1 þ c22a2 þ c23a3; k3 ¼ c13a1 þ c23a2 þ c33a3; ð1eÞ
where cij, eij, ai, g11 and b1 are elastic constants, piezoelectric constants, thermal expansion coefficients,
dielectric constants, and pyroelectric coefficients, respectively. rii and Drr are the component of stresses
and radial electric displacement, respectively.

The boundary conditions are
rrrða; tÞ ¼ P a0ðtÞ; rrrðb; tÞ ¼ P b0ðtÞ; uða; tÞ ¼ uaðtÞ; uðb; tÞ ¼ ubðtÞ. ð2Þ
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The initial conditions are
½urðr; tÞ�t¼0 ¼ ur0ðrÞ;
ourðr; tÞ

ot

� �
t¼0

¼ vr0ðrÞ. ð3Þ
Assuming that the magnetic permeability, l, of the piezoelectric hollow cylinder equals the magnetic perme-
ability of the medium around it, the governing electrodynamic Maxwell equations (Kraus, 1984) are given by
J
+

¼ r� h
+

; r� e
+ ¼ �l

o h
+

ot
; div h

+

¼ 0; e
+ ¼ �l

o U
+

ot
� H

+

 !
; h

+

¼ r� ðU
+

�H
+

Þ. ð4Þ
Applying an initial magnetic field vector H
+

ð0; 0;HzÞ in the hollow cylindrical coordinate (r,h,z) to Eq. (4),
yields
U
+

¼ ður; 0; 0Þ; e
+ ¼ �l 0;Hz

our

ot
; 0

� �
; h

+

¼ ð0; 0; hzÞ;

J
+

¼ 0;� ohz

or
; 0

� �
; hz ¼ �Hz

our

or
þ ur

r

� �
. ð5Þ
The electomagnetic dynamic equation of the piezoelectric hollow cylinder is expressed as
orrr

or
þ rrr � rhh

r
þ fzz ¼ q

o2ur

ot2
; ð6Þ
where q is the mass density, fzz is defined as Lorentz�s force (Kraus, 1984), which may be written as
fzz ¼ lðJ
+

�H
+

Þ ¼ lH 2
z

o

or
our

or
þ ur

r

� �
. ð7Þ
In order to simplify calculation, the non-dimensional forms are introduced as follows:
c1 ¼
c12

c11

; c2 ¼
c22

c11

; c3 ¼
c13

c11

; c4 ¼
c23

c11

; ei ¼
e1iffiffiffiffiffiffiffiffiffiffiffiffi

c11g11

p ði ¼ 1; 2; 3Þ;

ri ¼
rii

c11

ði ¼ r; hÞ; / ¼
ffiffiffiffiffiffi
g11

c11

r
u
b
; Dr ¼

Drrffiffiffiffiffiffiffiffiffiffiffiffi
c11g11

p ; T iðn; sÞ ¼
kiT ðr; tÞ

c11

ði ¼ 1; 2; 3Þ;

T bðn; sÞ ¼
b1T ðr; tÞffiffiffiffiffiffiffiffiffiffiffiffi

c11g11

p ; u ¼ ur

b
; n ¼ r

b
; s ¼ a

b
; CV ¼

ffiffiffiffiffiffi
c11

q

r
; s ¼ CV t

b
; f z ¼

fzz

c11

b; ð8Þ

P aðsÞ ¼
P a0ðtÞ

c11

; P bðsÞ ¼
P b0ðtÞ

c11

; /aðsÞ ¼
ffiffiffiffiffiffi
g11

c11

r
uða; tÞ

b
; /bðsÞ ¼

ffiffiffiffiffiffi
g11

c11

r
uðb; tÞ

b

then, Eqs. (1), (6) and (7) can be rewritten as
rr ¼
ou
on
þ c1

u
n
þ e1

o/
on
� T 1ðn; sÞ; ð9aÞ

rh ¼ c1

ou
on
þ c2

u
n
þ e2

o/
on
� T 2ðn; sÞ; ð9bÞ

rz ¼ c3
ou
on
þ c4

u
n
þ e3

o/
on
� T 3ðn; sÞ; ð9cÞ

Dr ¼ e1

ou
on
þ e2

u
n
� o/

on
þ T bðn; sÞ; ð9dÞ

orr

on
þ rr � rh

n
¼ o

2u
os2

; ð9eÞ

fz ¼
lH 2

z

c11

o

on
ou
on
þ u

n

� �
. ð9fÞ
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In absence of free charge density, the charge equation of electrostatics is
oDrðn; sÞ
on

þ Dr

n
¼ 0. ð10Þ
From Eq. (10), gives
Drðn; sÞ ¼
1

n
dðsÞ; ð11Þ
where d(s) is an undetermined function to non-dimensional time s.
According to Eq. (8), the boundary conditions (2) and the initial conditions (3) are rewritten as
rrðs; sÞ ¼ P aðsÞ; rrð1; sÞ ¼ P bðsÞ; /ðs; sÞ ¼ /aðsÞ; /ð1; sÞ ¼ /bðsÞ; ð12aÞ

½uðn; sÞ�s¼0 ¼ u0ðnÞ;
ouðn; sÞ

os

� �
s¼0

¼ v0ðnÞ. ð12bÞ
Substituting Eq. (11) into Eq. (9d), gives
o/
on
¼ e1

ou
on
þ e2

u
n
� 1

n
dðsÞ þ T bðn; sÞ. ð13Þ
Substituting Eq. (13) into Eqs. (9a) and (9b), yields,
rr ¼ ð1þ e2
1Þ

ou
on
þ ðc1 þ e1e2Þ

u
n
� e1

n
dðsÞ � T 1bðn; sÞ; ð14aÞ

rh ¼ ðc1 þ e1e2Þ
ou
on
þ ðc2 þ e2

2Þ
u
n
� e2

n
dðsÞ � T 2bðn; sÞ; ð14bÞ
where
T 1bðn; sÞ ¼ T 1ðn; sÞ � e1T bðn; sÞ; T 2bðn; sÞ ¼ T 2ðn; sÞ � e2T bðn; sÞ. ð14cÞ

Substituting Eq. (14a,b) into Eq. (9e), the basic displacement equation of magneto–thermo–electro–elastic
motion of the piezoelectric hollow cylinder is expressed as
o2uðn; sÞ
on2

þ 1

n
ouðn; sÞ

on
� H 2uðn; sÞ

n2
¼ 1

C2
L

o2uðn; sÞ
os2

þ I
dðsÞ
n2
þ gðn; sÞ; ð15aÞ
where
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11ðc2 þ e2

2Þ þ lH 2
z

c11ð1þ e2
1Þ þ lH 2

z

s
; CL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11ð1þ e2

1Þ þ lH 2
z

c11

s
;

I ¼ � c11e2

c11ð1þ e2
1Þ þ lH 2

z

; gðn; sÞ ¼ 1

c11ð1þ e2
1Þ þ lH 2

z

oT 1b

on
þ 1

n
ðT 1b � T 2bÞ

� �
. ð15bÞ
Substituting Eq. (14a) into Eq. (12a), the corresponding stress boundary conditions are rewritten as
ouðn; sÞ
on

þ h
uðn; sÞ

n

� �
n¼s

¼ h1ðsÞ; ð16aÞ

ouðn; sÞ
on

þ h
uðn; sÞ

n

� �
n¼1

¼ h2ðsÞ; ð16bÞ
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where
h ¼ c1 þ e1e2

1þ e2
1

; h1ðsÞ ¼
1

1þ e2
1

e1

s
dðsÞ þ T 1bðs; sÞ þ paðsÞ

h i
;

h2ðsÞ ¼
1

1þ e2
1

e1dðsÞ þ T 1bð1; sÞ þ pbðsÞ
� �

. ð16cÞ
3. Solving technique

Assuming that the general solution to the basic displacement Eq. (15) of magneto–thermo–electro–elas-
tic motion is expressed in the form
uðn; sÞ ¼ uqðn; sÞ þ udðn; sÞ; ð17Þ

where uq(n,s) and ud(n,s) are, respectively, the quasi-static solution which satisfies inhomogeneous bound-
ary conditions and dynamic solution which satisfies homogeneous boundary conditions, to Eq. (15a).

The quasi-static solution uq(n,s) must satisfy the following Eq. (18a) and the corresponding inhomoge-
neous boundary conditions Eq. (18b–c).
o2uqðn; sÞ
on2

þ 1

n
ouqðn; sÞ

on
� H 2

n2
uqðn; sÞ ¼ I

dðsÞ
n2
þ gðn; sÞ; ð18aÞ

ouqðn; sÞ
on

þ h
uqðn; sÞ

n

� �
n¼s

¼ h1ðsÞ; ð18bÞ

ouqðn; sÞ
on

þ h
uqðn; sÞ

n

� �
n¼1

¼ h2ðsÞ. ð18cÞ
Eq. (18a) can simplify to
o

on
n�ð2H�1Þ o

on
ðnH uqðn; sÞÞ

� �
¼ n�Hþ1½In�2dðsÞ þ gðn; sÞ�. ð19Þ
From Eq. (19) the quasi-static solution for Eq. (18a), which satisfies the boundary condition Eq. (18b–c) is
expressed as
uqðn; sÞ ¼ w1ðn; sÞ þ w2ðnÞpaðsÞ þ w3ðnÞpbðsÞ þ w4ðnÞdðsÞ; ð20Þ

where
w1ðn; sÞ ¼ n�H
Z n

s
n2H�1

Z n

s
n�Hþ1gðn; sÞdndn

þ n2H � s2H

2H
� s2H

h� H

� �
n�H q3ðsÞ þ

sHþ1T 1bðs; sÞ
ðh� HÞC2

L

n�H ; ð21aÞ

w2ðnÞ ¼
sHþ1n�H

C2
L

� g2ðn2H � s2HÞ
2H

þ g2s2H þ 1

ðh� HÞ

� �
ð21bÞ

w3ðnÞ ¼
g2n

�H

C2
L

ðn2H � s2H Þ
2H

� s2H

ðh� HÞ

� �
; ð21cÞ

w4ðnÞ ¼ I
sHn�H � 2þ s�HnH

2H 2
;

þ g3

n2H � s2H

2H
� s2H

h� H

� �
n�H þ e1sH

ðh� HÞC2
L

n�H ; ð21dÞ
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g3 ¼ g2 ðH � hÞg1 þ
Ið1� s�H Þ

H
þ e1

C2
L

ð1� sH Þ
" #

;

g2 ¼
2H

ð1� s2H ÞðH þ hÞ ; g1 ¼
�2þ s�H þ sH

2H
;

q1ðsÞ ¼
Z 1

s
n2H�1

Z n

s
n�Hþ1gðn; sÞdndn; q2ðsÞ ¼

Z 1

s
n�Hþ1gðn; sÞdn;

q3ðsÞ ¼ g2 ðH � hÞq1ðsÞ � q2ðsÞ þ
1

C2
L

½T 1bð1; sÞ � sHþ1T 1bðs; sÞ�
( )

; ð21e–jÞ
Substituting Eq. (17) into Eq. (15a) and utilizing Eq. (16a,b) and Eq. (18) provides an inhomogeneous dy-
namic equation with homogeneous boundary conditions, and the corresponding initial conditions for ud(n,s)
o2udðn; sÞ
on2

þ 1

n
oudðn; sÞ

on
� H 2

n2
udðn; sÞ ¼

1

C2
L

o2udðn; sÞ
os2

þ o2uqðn; sÞ
os2

� �
; ð22aÞ

oudðn; sÞ
on

þ h
udðn; sÞ

n

� �
n¼s

¼ 0;
oudðn; sÞ

on
þ h

udðn; sÞ
n

� �
n¼1

¼ 0; ð22bÞ

udðn; 0Þ þ uqðn; 0Þ ¼ u0;
oudðn; 0Þ

os
þ ouqðn; 0Þ

os
¼ v0. ð22cÞ
In the above equation, uq(n,s) is the known solution as shown in Eq. (20).
The homogeneous equation (let uq(n,s) = 0) of Eq. (22a) with homogeneous boundary (22b) is solved by

assuming
udðn; sÞ ¼ udiðnÞ expðixsÞ. ð23Þ

The corresponding Eigen-equation is expressed as
J aY b � J bY a ¼ 0; ð24Þ

where
J a ¼ kiJ 0H ðkisÞ þ h
J H ðkisÞ

s
; Jb ¼ kiJ 0H ðkiÞ þ hJ H ðkiÞ; ð25aÞ

Y a ¼ kiY 0HðkisÞ þ h
Y H ðkisÞ

s
; Y b ¼ kiY 0HðkiÞ þ hY H ðkiÞ. ð25bÞ
JH(kin)and YH(kin) are the first and the second kind of the Hth-order Bessel function, respectively. In these
expressions, ki (i = 1, 2, . . . ,n) express a series of positive roots for natural Eigen-equation (24). The natural
frequencies are
xi ¼ CLki. ð26Þ

From Cinelli (1965), defining �udðki; sÞas the finite Hankel transform of the solution ud(n,s) for Eq. (22a),
yields
�udðki; sÞ ¼ H ½udðn; sÞ� ¼
Z 1

s
nudðn; sÞGH ðkinÞdn. ð27Þ
Then, by making use of the inverse of the transform, yields
udðn; sÞ ¼
X

ki

�udðki; sÞ
F ðkiÞ

GH ðkinÞ; ð28Þ
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where
F ðkiÞ ¼
Z 1

s
n½GH ðkinÞ�2 dn;

¼ J 2
a

J 2
b

2

k2
i p

2
h2 þ k2

i 1� H
ki

� �2
" #( )

� 2

k2
i p

2

h
s

� �2

þ k2
i 1� H

kis

� �2
" #( )

; ð29aÞ

GH ðkinÞ ¼ J H ðkinÞY a � J aY H ðkinÞ. ð29bÞ
Applying the finite Hankel transform (27) to Eq. (22a) and utilizing the corresponding boundary condi-
tion (22b), gives
�k2
i �udðki; sÞ ¼

1

C2
L

o2�udðki; sÞ
os2

þ o2�uqðki; sÞ
os2

� �
; ð30Þ
where �uqðki; sÞ ¼ H ½uqðn; sÞ�.
Applying the Laplace transform to the two sides of Eq. (30) and utilizing the initial condition (22c),

yields
�k2
i C2

L�u�dðki; pÞ ¼ p2�u�dðki; pÞ þ p2�u�qðki; pÞ � p�u0ðkiÞ � �v0ðkiÞ; ð31Þ
where p is the parameter of the Laplace transform.
Eq. (31) can be simplified to
�u�dðki; pÞ ¼ ��u�qðki; pÞ þ
x2

i

ðx2
i þ p2Þ �u

�
qðki; pÞ þ

p�u0ðkiÞ
ðx2

i þ p2Þ þ
�v0ðkiÞ
ðx2

i þ p2Þ ; ð32Þ
where �u0ðkiÞ ¼ H ½u0ðnÞ� and �v0ðkiÞ ¼ H ½v0ðnÞ�.
The inverse Laplace transform for Eq. (32), gives
�udðki; sÞ ¼ ��uqðki; sÞ þ xi½�uqðki; sÞ sinðxisÞ� þ �u0ðkiÞ cosðxisÞ þ
�v0ðkiÞ
xi

sinðxisÞ; ð33Þ
where
�uqðki; sÞ sinðxisÞ ¼
Z s

0

�uqðki; tÞ sin½xiðs� tÞ�dt. ð34Þ
Substituting Eq. (34) into Eq. (33), gives
�uqðki; sÞ sinðxisÞ ¼
Z s

0

½�w1ðki; sÞ þ �w2ðkiÞpaðsÞ þ �w3ðkiÞpbðsÞ þ �w4ðkiÞdðsÞ� sin½xiðs� tÞ�dt; ð35Þ
where �wjðki; sÞ ¼ H ½wjðn; sÞ�; ðj ¼ 1; 2; 3; 4Þ.
Substituting Eq. (35) into Eq. (33), yields
�udðki; sÞ ¼ I1iðki; sÞ þ �w2ðkiÞI2iðki; sÞ þ �w3ðkiÞI3iðki; sÞ þ �w4ðkiÞI4iðki; sÞ þ I5iðki; sÞ; ð36Þ
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where
I1iðki; sÞ ¼ ��w1ðki; sÞ þ xi

Z s

0

�w1ðki; tÞ sin½xiðs� tÞ�dt;

I2iðki; sÞ ¼ �paðsÞ þ xi

Z s

0

paðtÞ sin½xiðs� tÞ�dt;

I3iðki; sÞ ¼ �pbðsÞ þ xi

Z s

0

pbðsÞ sin½xiðs� tÞ�dt;

I4iðki; sÞ ¼ �dðsÞ þ xi

Z s

0

dðtÞ sin½xiðs� tÞ�dt;

I5iðki; sÞ ¼ �u0ðkiÞ cosðxisÞ þ �v0ðkiÞ
1

xi
sinðxisÞ.

ð37Þ
Substituting Eq. (36) into Eq. (28), the dynamic solution for inhomogeneous dynamic equation (22) with
homogeneous boundary conditions is given by
udðn; sÞ ¼
X

ki

GH ðkinÞ
F ðkiÞ

½I1iðki; sÞ þ �w2ðkiÞI2iðki; sÞ þ �w3ðkiÞI3iðki; sÞ þ �w4ðkiÞI4iðki; sÞ þ I5iðki; sÞ�. ð38Þ
Thus, from Eqs. (17), (20) and (38), the solution of the basic displacement equation of magneto–thermo–
electro–elastic motion in the piezoelectric hollow cylinder is expressed as
uðn; sÞ ¼ w1ðn; sÞ þ w2ðnÞpaðsÞ þ w3ðnÞpbðsÞ þ w4ðnÞdðsÞ þ
X

ki

GH ðkinÞ
F ðkiÞ

� ½I1iðki; sÞ þ �w2ðkiÞI2iðki; sÞ þ �w3ðkiÞI3iðki; sÞ þ �w4ðkiÞI4iðki; sÞ þ I5iðki; sÞ�. ð39Þ
Noting that in the above expression d(s) still is an unknown function which is relation to the electric dis-
placement. Thus, it is necessary to determine d(s) in the following.

Integrating Eq. (13) and utilizing the corresponding electric boundary condition (12a), yields
/ðn; sÞ ¼ U1ðn; sÞ þ U2ðnÞpaðsÞ þ U3ðnÞpbðsÞ þ U4ðnÞdðsÞ þ
X

i

U5iðnÞF iðsÞ þ /aðsÞ; ð40Þ
where
U1ðn; sÞ ¼ e1 w1ðn; sÞ � w1ðs; sÞ �
X

ki

ðGH ðkinÞ � GH ðkisÞÞ
F ðkiÞ

�w1ðki; sÞ
" #

þ e2

Z n

s

1

n
w1ðn; sÞ �

X
ki

GHðkinÞ
F ðkiÞ

�w1ðki; sÞ
" #

dnþ
Z n

s
T bðn; sÞdn; ð41aÞ

U2ðnÞ ¼ e1 w2ðnÞ � w2ðsÞ �
X

ki

ðGH ðkinÞ � GH ðkisÞÞ
F ðkiÞ

�w2ðkiÞ
" #

þ e2

Z n

s

1

n
w2ðnÞ �

X
ki

GH ðkinÞ
F ðkiÞ

�w2ðkiÞ
" #

dn; ð41bÞ

U3ðnÞ ¼ e1 w3ðnÞ � w3ðsÞ �
X

ki

ðGH ðkinÞ � GH ðkisÞÞ
F ðkiÞ

�w3ðkiÞ
" #

þ e2

Z n

s

1

n
w3ðnÞ �

X
ki

GH ðkinÞ
F ðkiÞ

�w3ðkiÞ
" #

dn; ð41cÞ
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U4ðnÞ ¼ e1 w4ðnÞ � w4ðsÞ �
X

ki

ðGH ðkinÞ � GH ðkisÞÞ
F ðkiÞ

�w4ðkiÞ
" #

þ e2

Z n

s

1

f
w4ðnÞ �

X
ki

GHðkinÞ
F ðkiÞ

�w4ðkiÞ
" #

dn� ln
n
s

� �
; ð41dÞ

U5iðnÞ ¼ e1

ðGH ðkinÞ � GH ðkisÞÞ
F ðkiÞ

þ e2

Z n

s

1

n
GH ðkinÞ

F ðkiÞ
dn; ð41eÞ

F iðsÞ ¼ F 1iðsÞ þ �w4ðkiÞxi

Z s

0

dðtÞ sin½xiðs� tÞ�dt; ð41fÞ

F 1iðsÞ ¼ xi

Z s

0

�wðki; sÞ sin½xiðs� tÞ�dt þ �w2ðkiÞxi

Z s

0

paðtÞ sin½xiðs� tÞ�dt

þ �w3ðkiÞxi

Z s

0

pbðtÞ sin½xiðs� tÞ�dt þ �u0ðkiÞ cosðxisÞ þ �v0ðkiÞ
1

xi
sinðxisÞ. ð41gÞ
When n = 1 at the outer electric boundary of the piezoelectric hollow cylinder, Eq. (40) can be rewritten
as
/bðsÞ ¼ U1ð1; sÞ þ U2ð1ÞpaðsÞ þ U3ð1ÞpbðsÞ þ U4ð1ÞdðsÞ þ
X

i

U5ið1ÞF iðsÞ þ /aðsÞ. ð42Þ
Substituting s = 0 into Eq. (42), yields
dð0Þ ¼ /bð0Þ � /að0Þ � U1ð1; sÞ � U2ð1Þpað0Þ � U3ð1Þpbð0Þ �
P

iU5ið1ÞF ið0Þ
U4ð1Þ

. ð43Þ
Substituting Eq. (41d) into Eq. (42), yields
#ðsÞ ¼ M1dðsÞ þ
X

i

M2i

Z s

0

dðtÞ sin½xiðs� tÞ�dt; ð44Þ
where
#ðsÞ ¼ /bðsÞ � /aðsÞ � U1ð1; sÞ � U2ð1ÞpaðsÞ � U3ð1ÞpbðsÞ �
X

i

U5ið1ÞF 1iðsÞM1 ¼ U4ð1Þ;

M2i ¼ U5ið1Þ�w4ðkiÞxi. ð45Þ
It is seen that Eq. (44) is the Volterra integral equation of the second kind (Kress, 1989). In the following,
Eq. (44) is solved by using the recursion formula based on linear interpolation function. In order to show
the method of solving the integral Eq. (44), the time interval [0,s] is firstly divided into n subintervals. The
discrete time points are s0 = 0,s1,s2, . . . ,sn. Then the interpolation function at the time interval [sj�1,sj] is
expressed as
dðsÞ ¼ g0
j ðsÞdðsj�1Þ þ g1

j ðsÞdðsjÞ ðj ¼ 1; 2; . . . ; nÞ; ð46Þ
where
g0
j ðsÞ ¼

s� sj

sj�1 � sj
; g1

j ðsÞ ¼
s� sj�1

sj � sj�1

ðj ¼ 1; 2; . . . ; nÞ. ð47Þ
Substituting Eq. (46) into Eq. (44), gives
#ðsjÞ ¼ M1dðsjÞ þ
X

i

M2i

Xj

k¼1

Rijkdðsk�1Þ þ SijkdðskÞ
� �

; ð48Þ
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where
Rijk ¼
R sk

sk�1
g0

kðtÞ sin½xiðs� tÞ�dt

Sijk ¼
R sk

sk�1
g1

kðtÞ sin½xiðs� tÞ�dt
ðk ¼ 1; 2; . . . ; j; j ¼ 1; 2; . . . ; nÞ. ð49Þ
From Eq. (48), yields
dðsjÞ ¼
#ðsjÞ �

P
iM2i

Pj�1
k¼1½Rijkdðsk�1Þ þ SijkdðskÞ� � dðsj�1Þ

P
iM2iRijj

M1 þ
P

iM2iSijj
ðj ¼ 1; 2; . . . ; nÞ ð50Þ
Substituting d(0) in Eq. (43) into Eq. (48), d(sj) can be obtained, (j = 1,2, . . . ,n) step by step, and determine
d(s). Substituting d(s) obtained from Eq. (50) into Eq. (39), gives the exact expression of the solution,
u(n,s), for the basic equation of magneto–thermo–electro–elastic motion in the piezoelectric hollow cylin-
der. Thus, the corresponding transient stresses rr(n,s),rh(n,s), the transient electric displacement Dr(n,s),
the transient electric potential /(n,s) and perturbation of magnetic field vector hz(n,s) are easily obtained
from Eqs. (9), (13) and (5b).
4. Numerical results and discussion

Transient responses and distributions of the piezoelectric hollow cylinder placed in an axial magnetic
field, subjected to complex loadings are considered. A transitory temperature change produced by a sudden
electric current pulse or by absorption of electromagnetic wave, is typically of a duration much less than
1 ls and may be expressed as
T ðr; tÞ ¼ T 0 1� r � a
2ðb� aÞ

� �
HðtÞ; ð51Þ
where T0 is taken as 1, and H(t) expresses the Heaviside function.
In the numerical calculations, material constants are selected for the piezoelectric hollow cylinder as

follows:
c11 ¼ c33 ¼ 111:0 GPa; c22 ¼ 220:0 GPa; c13 ¼ c23 ¼ 115:0 GPa; e11 ¼ 15:1 ðV m N�1Þ;
e12 ¼ e13 ¼ �5:2 ðV m N�1Þ; a1 ¼ a3 ¼ 0:0001 ðK�1Þ; a2 ¼ 0:00001 ðK�1Þ;
g11 ¼ 5:62� 10�9 ðN V�2Þ; b1 ¼ �2:5� 10�5ðN V�1 m�1 K�1Þ; q ¼ 4350 ðkg m�3Þ.
The dynamic responses in the piezoelectric hollow cylinder subjected to a suddenly mechanical load on
the internal surface are to be considered. The corresponding boundary conditions are expressed as
rrð1; sÞ ¼ r0HðsÞ; rrð1; sÞ ¼ 0; /aðs; sÞ ¼ 0; /bð1; sÞ ¼ 0; ð52Þ

where r0 is a constant pressure, the non-dimensional r�i ¼ ri

r0
ði ¼ r; hÞ; D�r ¼ Dr

r0
; /� ¼ /

r0
and h�z ¼ hz

r0
are

introduced in Figs. 1–10.

Example 1. The wall thickness ratio is s = 1/21, the dimensionless time is taken as s1 ¼ CLs
sCv
¼ CLt

a , and the
dimensionless radial coordinate is taken as R ¼ n�s

s ¼ r�a
a . The response histories and distributions of the

dynamic stresses for R = 20 are shown in Figs. 1 and 2. In order to avoid the effects of reflected waves,
the computing time s1 = 20 is taken. Figs. 1, 2 and 5, respectively, show the response histories of radial,
hoop stresses and perturbation of magnetic field vector at different radial points. It is easy seen that the
stresses responses and perturbation of magnetic field vector at some points is essentially zero before the
arrival of the wavefront, and have strong discontinuities at the points where the wavefront arrives at. The
amplitude of the wavefront decays gradually, and the dynamic response approaches to the quasi-static
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Fig. 1. Response histories of dynamic stress r�r at R = 0, R = 1, R = 2, and R = 20 where R ¼ r�a
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solution at the same point when time is large and the effect of reflected does not appear. Figs. 3 and 4
illustrate the response histories and distributions of the electric displacement Dr(n,s) and the electric
potential /(n,s) at the different radial points in the piezoelectric hollow cylinder subjected to a suddenly
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Fig. 5. Response history of perturbation of magnetic field vector h�z at R = 0, R = 1 and R = 2, where R ¼ r�a
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pressure on the internal surface. From Figs. 3 and 4, it is easy seen that the response histories and
distributions of the electric displacements Dr(n,s)and the electric potential /(n,s) are similar to that of the
dynamic stresses. They will also arrive finally at a steady value when time s is large and the effect of
reflected does not appear. From Fig. 4, it is seen that the electric potential /(n,s) at the internal and
external boundary equal zero, which satisfy the prescribed electric boundary conditions. The above
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described shows that the solution in the paper possesses wave properties, and the correction of the
numerical results is clarified.

In the following two examples, the internal radius of the piezoelectric hollow cylinder is taken as
a = 0.01 m, and the wall thickness ratio is taken as s = 1/2. The dimensionless time is taken as
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s1 ¼ CLs
ð1�sÞCv

¼ CLt
b�a, the dimensionless radial coordinate, R ¼ n�s

1�s ¼ r�a
b�a and the response time is taken as

s1 = 50.

Example 2. Other conditions are the same as Example 1. Figs. 6 and 7, respectively, show the response
histories of radial and hoop stresses at different radial points. Because of the small wall thickness, the effects
of wave reflected between the inner-wall and outer-wall appear. From Fig. 6, it is shown that except the
radial stresses at the internal and external surfaces of the piezoelectric hollow cylinder satisfy the given zero
boundary condition, and the stresses at other points oscillate dramatically because of the effect of wave
reflected between the inner wall and outer wall. From Figs. 7 and 8, it is seen that the peak values of hoop
stresses and electric displacements decrease gradually from internal wall to external wall at the identical
time s. It is seen in Fig. 9 that the electric potential /* at the internal and external boundaries equal zero,
which satisfy the prescribed electric boundary conditions (52), and the distribution of the electric potential
/* along radius is non-linear at different non-dimensional time s. Fig. 10 depicts the response histories of
magnetic field vector at different radial points. It is seen easily from the curve that the magnitude value of
perturbation of magnetic field vector becomes small from the internal wall to external wall of the piezoelec-
tric hollow cylinder.

Example 3. Consider that the transient responses of the piezoelectric hollow cylinder subjected to thermal
shock load T(r, t) in Eq. (51), and electric excitation induced by inhomogeneous electric boundary condi-
tions (53). The inhomogeneous electric boundary condition are written as
rrð1; sÞ ¼ 0; rrð1; sÞ ¼ 0; /aðs; sÞ ¼ 0; /bð1; sÞ ¼ /0HðsÞ; ð53Þ

where /0 is a constant electric potential, the non-dimensional r�i ¼ ri

/0
ði ¼ r; hÞ; D�r ¼ Dr

/0
; /� ¼ /

/0
and h�z ¼

hz
/0

are introduced in Figs. 11–15.

From Figs. 11 and 14, it is seen that the radial stresses and the electric potential at the boundaries
R = 0,1 satisfy the given boundary conditions. Except the points at given boundary condition, transient
responses at other points oscillates dramatically as shown in Figs. 11 and 14. It is seen from Fig. 11 that the
maximum amplitude of radial compression stress is larger than that of radial tension stress. Fig. 12 shows
that the amplitude of hoop compression stress at the internal wall of the piezoelectric hollow cylinder is
larger than the amplitude of hoop tension stress. However, the amplitude of hoop compression stress at the
external wall of the piezoelectric hollow cylinder is less than the amplitude of hoop tension stress, which is
shown in Fig. 12. The response histories of electric displacement always are negative as shown in Fig. 13.
This is similar change as shown in Fig. 8. It is seen in Fig. 14 that the distribution of the electric potential /*
along radius is weak non-linear at different non-dimensional time s. Comparing Figs. 15 and 10, it is seen
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that the histories and distribution of perturbation of magnetic field vector caused by the sudden unit electric
potential is similar to that caused by the sudden unit pressure, but the responded amplitude of perturbation
of magnetic field vector caused by the sudden unit electric potential is larger than that caused by the sudden
unit pressure.
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Fig. 16. Response histories of radial stress rr, at R = 0.5 in the piezoelectric hollow cylinder no considering an axial magnetic field load
and thermal shock, where R ¼ r�a
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b�a.
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Example 4. In order to prove further the correctness of analytical results in the paper, omitting the axial
magnetic field load and thermal shock, the present method can be applied to solve the transient problem of
piezoelectric hollow cylinders. For ease of comparison with reference (Ding et al., 2003), the same transient
problem of the piezoelectric hollow cylinder no considering an axial magnetic field load and thermal shock
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Fig. 17. Response histories of hoop stress rh, at R = 0, in the piezoelectric hollow cylinder no considering an axial magnetic field load
and thermal shock, where R ¼ r�a

b�a ; s1 ¼ CLt
b�a.
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is taken and the same parameters are taken: the ratio of internal radius to external radius s = a/b = 1/2, the
dimensionless radial coordinate R ¼ r�a

b�a and dimensionless time s1 ¼ CLt
b�a. The boundary conditions are

expressed in Eq. (52). From Figs. 16 and 17, one can see that the results from the two different methods
are nearly the same.
5. Conclusions

1. Comparing Example 2 with Example 3, it is seen that the response histories and distributions of stresses,
electric displacement, electric potential and perturbation of magnetic field in a piezoelectric hollow cylin-
der are obviously different for two kinds of boundary conditions which are, respectively, shown in Eqs.
(52) and (53). Thus, it is possible to control the response histories and distribution of magneto–thermo–
electro–elastic stresses in the piezoelectric hollow cylinder by applying a suitable thermal load, mechanical
load and electric excitation load to the structure, or to assessment the response histories and distributions
of magneto–thermo–electro–elastic stresses in the piezoelectric hollow cylinder by measuring the response
histories of electric potential in the structure.

2. It is noted that while solving the present problem, the number of eigenvalue terms was taken to be only
40, and the relative error in the results obtained was less 1%, from this knowledge of the response his-
tories for magneto–thermo–electro–elastic stresses, electric displacement, electric potential and perturba-
tions of an axial magnetic field in the piezoelectric hollow cylinder. We can design various
electromagnetoelastic elements under complex loads to meet special engineering requirements.

3. It is concluded from the above analyses and results that the present solution is accurate and reliable, and
the method is simple and effective. So it may be used as a reference to solve other transient problems of
coupled magneto–thermo–electro–elasticity.
References

Chandrasekhararaiah, D.S.A., 1988. Generalized linear thermoelasticity theory for piezoelectric media. Acta Mechanica 71, 39–49.
Cinelli, G., 1965. An extension of the finite Hankel transform and application. International Journal of Engineering Science 3, 539–

559.



5646 H.L. Dai, X. Wang / International Journal of Solids and Structures 43 (2006) 5628–5646
Dai, H.L., Wang, X., 2004. Dynamic responses of piezoelectric hollow cylinders in an axial magnetic field. International Journal of
Solids and Structures 41, 5231–5246.

Ding, H.J., Chen, W.Q., Guo, Y.M., Yang, Q.D., 1997. Free vibration of piezoelectric cylindrical shells filled with compressible fluid.
International Journal of Solids and Structures 34, 2025–2034.

Ding, H.J., Wang, H.M., Hou, P.F., 2003. The transient responses of piezoelectric hollow cylinders for axisymmetric plane strain
problems. International Journal of Solids and Structures 40, 105–123.

Kapuria, S., Dumir, P.C., Sengupta, S., 1996. Exact piezothermoelastic axisymmetric solution of a finite transversely isotropic
cylindrical shell. Computer and Structures 61 (6), 1085–1099.

Kapuria, S., Sengupta, S., Dumir, P.C., 1997. Three-dimensional solution for a hybrid cylindrical shell under axisymmetric
thermoelectric load. Archive of Applied Mechanics 67 (5), 320–330.

Kraus, J.D., 1984. Electromagnetics. McGrawHill, Inc., USA.
Kress, R., 1989. Linear Integral EquationApplied Mathematical Sciences, 82. Springer-Verlag World Publishing Corp.
Lekhniskii, S.G., 1981. Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow.
Mithchell, J.A., Reddy, J.N., 1995. A study of embedded piezoelectric layers in composite cylinders. Journal of Applied Mechanics 62,

166–173.
Raja, S., Rohwer, K., Rose, M., 1999. Piezothermoelastic modeling and active vibration control of laminated composite beams.

Journal of Intelligent Material Systems and Structures 10 (11), 890–899.
Rao, S.S., Sunar, M., 1993. Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA

Journal 31, 1280–1286.
Rao, S.S., Sunar, M., 1994. Piezoelectricity and its use in disturbance sensing and control of flexible structures. Applied Mechanics

Reviews 47 (4), 113–123.
Ray, M.C., Rao, K.M., Samanta, B., 1992. Exact analysis of coupled electroelastic behavior of piezoelectric plate under cylindrical

bending. Computer and Structures 45, 667–677.
Ray, M.C., Rao, K.M., Samanta, B., 1993. Exact analysis for static analysis of an intelligent structure under cylindrical bending.

Computer and Structures 47, 1031–1042.
Shul�ga, N.A., Grigorenko, A.Y., Loza, I.A., 1984. Axisymmetric electroelastic waves in a hollow piezoelectric ceramic cylinder.

Prikladnaya Mekhanika 20 (1), 26–32.
Tauchert, T.R., 1992. Piezothermoelastic behavior of a laminated plate. Journal of Thermal Stresses 15, 25–37.
Wang, X., Lu, G., 2002. Magnetothermodynamic stress and perturbation of magnetic field vector in a solid cylinder. Journal of

Thermal Stresses 25, 909–926.


	Magneto - thermo - electro - elastic transient response in a piezoelectric hollow cylinder subjected to complex loadings
	Introduction
	Basic formulations
	Solving technique
	Numerical results and discussion
	Conclusions
	References


